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Abstract

This paper deals with the small- and large-amplitude vibrations of compressively and thermally post-buckled sandwich

plates with functionally graded material (FGM) face sheets in thermal environments. Both heat conduction and

temperature-dependent material properties are taken into account. The material properties of FGM face sheets are

assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume

fractions of the constituents, and the material properties of both FGM face sheets and a homogeneous substrate are

assumed to be temperature dependent. The formulations are based on a higher-order shear deformation plate theory and a

general von Kármán-type equation that includes a thermal effect. The equations of motion are solved by an improved

perturbation technique. The numerical illustrations concern small- and large-amplitude vibration characteristics of post-

buckled sandwich plates with FGM face sheets under uniform and non-uniform temperature fields. The results show that,

as the volume fraction index increases, the fundamental frequency increases in the pre-buckling region, but decreases in the

post-buckling region. In contrast, the nonlinear frequency ratio decreases in both the pre- and post-buckling region on

increasing the volume fraction index. The results also reveal that the substrate-to-face sheet thickness ratio and

temperature changes have a significant effect on the fundamental frequency, but only have a small effect on the nonlinear

frequency ratio.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A typical laminated structure, which, due to its outstanding features, is used in the aeronautical industry, is
the sandwich-type construction. Recently, sandwich construction has become even more attractive for the
introduction of advanced composite materials for face sheets [1,2]. Functionally graded materials (FGMs) are
microscopically inhomogeneous composites usually made from a mixture of metals and ceramics. The
numerous advantages offered by FGMs over conventional materials and the need to overcome the technical
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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challenges involving high-temperature environments have prompted an increased use of sandwich structures
with FGM facings.

A great deal of interest for the vibration analysis of post-buckled plates is being shown in the specialized
literature. Bisplinghoff and Pian [3] studied the small-amplitude vibrations of a simply supported rectangular
isotropic post-buckled plate with an aspect ratio of 3, subjected to in-plane compression due to thermal
loading. In their analysis, the model equations of motion were derived from Lagrange’s equation with the
strain energy and kinetic energy. Yang and Han [4] studied the small- and large-amplitude vibration of
isotropic post-buckled plates. In their analysis, a simple relation between the uniform temperature change and
the in-plane compressive load in the post-buckling region was used. Zhou et al. [5] studied the free vibration of
thermally buckled composite plates. The influence of lamination angle, temperature distribution, plate
planform of arbitrary shape and boundary support conditions on post-buckling and vibration behavior was
investigated. Lee and Lee [6,7] investigated vibration behaviors of unstiffened and stiffened, thermally
post-buckled anisotropic plates using the first-order shear deformable plate theory. The effect of fiber
orientation angle and aspect ratio on post-buckling and vibration behaviors was investigated for simply
supported laminated plates subject to a steady-state uniform temperature increase. Shiau and Wu [8] studied
free vibration of buckled composite plates and found that for a plate with certain boundary conditions, the
natural frequency may show a sudden jump due to buckle pattern change of the plate in the post-buckling
region. This work was then extended to the case of free vibration of thermally buckled sandwich plates
with composite face sheets [9]. Their results show that if the shape of a free vibration mode is similar to the
plate buckling mode then the natural frequency of that mode will drop to zero when the temperature
reaches the buckling temperature. Girish and Ramachandra [10] presented the post-buckling and post-buckled
vibrations of a symmetrically laminated composite plate subjected to a uniform temperature distribution
through the thickness. The structural model is based on a higher-order shear deformation theory and the
Galerkin method, along with Newton–Raphson procedure was used to solve nonlinear algebraic
equations. The free vibration frequencies of a thermally post-buckled plate were reported by solving the
eigenvalue problem for different post-buckled deflections. Singha et al. [11] analyzed the vibration
characteristics of thermally stressed composite skew plates in the pre- and post-buckling states. Park and
Kim [12] investigated thermal post-buckling and small-amplitude vibration behaviors of simply supported
FGM plates with temperature-dependent material properties in the pre- and post-buckled regions. Their
results show that the behaviors of the thermal post-buckling and vibration of the FGM plate are different
from those of the isotropic plate, and the volume fraction of the constituent materials for FGMs has an effect
on behaviors of the thermal post-buckling and vibration of the FGM plates. In the aforementioned
investigations, nonlinear finite element equations based on a classical or a first-order shear deformation theory
were formulated [4–9,11,12], but the material properties were assumed to be independent of temperature
except for [12].

Since FGMs are used in high-temperature environments, the constituents of FGM face sheets possess
temperature-dependent properties. Therefore, the material properties of FGM face sheets must be
temperature dependent and position dependent. On the other hand, ceramics and metals used in FGMs do
store different amounts of heat, and therefore heat conduction usually occurs. When the material properties
are assumed to be functions of temperature and position, and the temperature is also assumed to be a function
of position, the problem becomes very complicated.

The present work deals with the small- and large-amplitude vibrations of compressively and thermally post-
buckled sandwich plates with FGM face sheets in thermal environments. The novel contribution of the present
work is that both the heat conduction and temperature-dependent material properties are taken into account.
The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a
simple power-law distribution in terms of the volume fractions of the constituents, and the material properties
of both FGM face sheets and the homogeneous substrate are assumed to be temperature dependent. The
formulations of the plate are based on Reddy’s higher-order shear deformation plate theory that includes
thermal effects. The von Kármán nonlinear strain–displacement relation is used to account for a large
deflection. These equations can be mathematically divided into two sets and solved in sequence. The first set of
equations yields the particular solution of static post-buckling or thermal post-buckling deflection, and
the second set of equations gives the homogeneous solution of vibration characteristics on the buckled plate.
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The numerical illustrations show the effect of temperature field, volume fraction distribution of FGM face
sheets and substrate-to-face sheet thickness ratio on the vibration characteristics of sandwich plates.
2. Theoretical development

The sandwich plate considered herein comprises one homogeneous substrate and two face sheets made of
FGMs and is mid-plane symmetric, as shown in Fig. 1. The length, width and thickness of the sandwich plate
are a, b and h. The thickness of each FGM face sheet is hF, while the thickness of the homogeneous substrate is
hH. The plate is subjected to a compressive edge load in the X-direction and/or thermal loading. As usual, the
coordinate system has its origin at the corner of the plate on the mid-plane. Let Ū , V̄ and W̄ be the plate
displacements parallel to a right-hand set of axes (X, Y, Z), where X is longitudinal and Z is perpendicular to
the plate. C̄x and C̄y are the mid-plane rotations of the normals about the Y and X axes, respectively. Let
F̄ ðX ;Y Þ be the stress function for the stress resultants defined by N̄x ¼ F̄ ;yy, N̄y ¼ F̄ ;xx and N̄xy ¼ �F̄ ;xy,
where a comma denotes partial differentiation with respect to the corresponding coordinates.

The FGM face sheet is made from a mixture of ceramics and metals, the mixing ratio of which is varied
continuously and smoothly in the Z direction. This is achieved by using a simple rule of mixture of composite
materials. The accuracy of the rule of mixture was discussed and a remarkable synergism between the
Mori–Tanaka scheme and the rule of mixture was found in Ref. [13]. The effective material properties Pf (like
Young’s modulus Ef or thermal expansion coefficient af) can be expressed as

Pf ¼ PcVc þ PmVm (1)

in which Pc and Pm denote the temperature-dependent properties of the ceramic and metal, respectively, and
Vc and Vm are the ceramic and metal volume fractions and are related by

Vc þ Vm ¼ 1. (2)

The volume fraction Vm (for the top FGM face sheet) follows a simple power law as

V m ¼
Z � h0

h1 � h0

� �N

, (3)

where the volume fraction index N (0pNpp) dictates the material variation profile through the FGM layer
thickness.

It is postulated that the effective Young’s modulus Ef, thermal expansion coefficient af and thermal
conductivity kf are temperature dependent, whereas the mass density rf is independent of the temperature.
Poisson’s ratio nf depends weakly on temperature change and is assumed to be a constant. From Eqs. (1)
to (3), one has

Ef ðZ;TÞ ¼ ½EmðTÞ � EcðTÞ�
Z � h0

h1 � h0

� �N

þ EcðTÞ, (4a)
X

Y

Z

a

b

h

hF

hH

h0
h1

h2
h3

Fig. 1. Configuration of a sandwich plate.
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af ðZ;TÞ ¼ ½amðTÞ � acðTÞ�
Z � h0

h1 � h0

� �N

þ acðTÞ, (4b)

kf ðZ;TÞ ¼ ½kmðTÞ � kcðTÞ�
Z � h0

h1 � h0

� �N

þ kcðTÞ, (4c)

rf ðZÞ ¼ ðrm � rcÞ
Z � h0

h1 � h0

� �N

þ rc. (4d)

We assume that the temperature variation occurs in the thickness direction only and the one-dimensional
temperature field is assumed to be constant in the XY plane of the plate. In such a case, the temperature
distribution along the thickness can be obtained by solving a steady-state heat transfer equation

�
d

dZ
k
dT

dZ

� �
¼ 0, (5)

where

k ¼

kf ðh0pZoh1Þ;

kH ðh1pZph2Þ;

kf ðh2oZph3Þ;

8>><
>>: (6a)

T ¼

Tf ðh0pZph1Þ;

TH ðh1pZph2Þ;

~Tf ðh2pZph3Þ;

8>>><
>>>:

(6b)

where kH is the thermal conductivity of the homogeneous substrate. Eq. (5) is solved by imposing the
boundary conditions T ¼ TU at Z ¼ h0 and T ¼ TL at Z ¼ h3, and the continuity conditions

TF ðh1Þ ¼ TH ðh1Þ ¼ Tm1; TH ðh2Þ ¼ ~TF ðh2Þ ¼ Tm2, (7a)

km

dTF

dZ

����
Z¼h1

¼ kH

dTH

dZ

����
Z¼h1

; kH

dTH

dZ

����
Z¼h2

¼ km

d ~TF

dZ

����
Z¼h2

, (7b)

where TU and TL are the temperatures at the top and the bottom surfaces of the plate, and Tm1 and Tm2 are the
temperatures at Z ¼ h1 and h2 interfaces, respectively.

The solution of Eqs. (5)–(7), by means of polynomial series, is

TF ¼ TU þ ðTm1 � TU ÞZðZÞ, (8a)

TH ¼
1

hH

½ðTm1h2 � Tm2h1Þ þ ðTm2 � Tm1ÞZ�, (8b)

~TF ðZÞ ¼ TL þ ðTm2 � TLÞ~ZðZÞ (8c)

in which

ZðZÞ ¼
1

C

Z � h0

h1 � h0

� �"
�

kmc

ðN þ 1Þkc

Z � h0

h1 � h0

� �Nþ1

þ
k2mc

ð2N þ 1Þk2c

Z � h0

h1 � h0

� �2Nþ1

�
k3mc

ð3N þ 1Þk3c

Z � h0

h1 � h0

� �3Nþ1

þ
k4mc

ð4N þ 1Þk4c

Z � h0

h1 � h0

� �4Nþ1

�
k5mc

ð5N þ 1Þk5c

Z � h0

h1 � h0

� �5Nþ1
#
, (9a)
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~ZðZÞ ¼
1

C

Z � h3

h2 � h3

� �"
�

kmc

ðN þ 1Þkc

Z � h3

h2 � h3

� �Nþ1

þ
k2mc

ð2N þ 1Þk2c

Z � h3

h2 � h3

� �2Nþ1

�
k3mc

ð3N þ 1Þk3c

Z � h3

h2 � h3

� �3Nþ1

þ
k4mc

ð4N þ 1Þk4c

Z � h3

h2 � h3

� �4Nþ1

�
k5mc

ð5N þ 1Þk5c

Z � h3

h2 � h3

� �5Nþ1
#
,

(9b)

C ¼ 1�
kmc

ðN þ 1Þkc

þ
k2mc

ð2N þ 1Þk2c
�

k3mc

ð3N þ 1Þk3c
þ

k4mc

ð4N þ 1Þk4c
�

k5mc

ð5N þ 1Þk5c
, (9c)

G ¼ 1�
kmc

kc

þ
k2mc

k2c
�

k3mc

k3c
þ

k4mc

k4c
�

k5mc

k5c
,

where kmc ¼ km�kc, and

Tm1 ¼
½ðkH=hH Þ þ ðkmG=tF CÞ�TU þ ðkH=hH ÞTL

ðkmG=hF CÞ þ ð2kH=hHÞ
; Tm2 ¼

½ðkH=hH Þ þ ðkmG=hF CÞ�TL þ ðkH=hHÞTU

ðkmG=hF CÞ þ ð2kH=hH Þ
. (10)

Note that in the above equations kH, km and kc are temperature dependent.
Reddy [14,15] developed a simple higher-order shear deformation plate theory, in which the transverse shear

strains are assumed to be parabolically distributed across the plate thickness and which contains the same
dependent unknowns (Ū , V̄ , W̄ , C̄x and C̄y) as in the first-order shear deformation theory, but no shear
correction factors are required. Based on Reddy’s higher-order shear deformation plate theory, Shen [16]
derived a set of general von Kármán-type equations which can be expressed in terms of a transverse
displacement W̄ , two rotations C̄x and C̄y and stress function F̄ . These general von Kármán-type equations
are successfully used in solving many nonlinear problems, e.g. nonlinear bending, post-buckling and nonlinear
vibration of shear deformable FGM plates [17–19]. By using Hamilton’s principle, we can easily obtain the
nonlinear motion equations of such plates as [19]

~L11ðW̄ Þ � ~L12ðC̄xÞ � ~L13ðC̄yÞ þ ~L14ðF̄ Þ � ~L15ðN̄
T
Þ � ~L16ðM̄

T
Þ

¼ ~LðW̄ ; F̄ Þ þ ~L17ð
€̄W Þ þ I8

q €̄Cx

qX
þ

q €̄Cy

qY

 !
, (11)

~L21ðF̄ Þ þ ~L22ðC̄xÞ þ ~L23ðC̄yÞ � ~L24ðW̄ Þ � ~L25ðN̄
T
Þ ¼ �1

2
~LðW̄ ; W̄ Þ, (12)

~L31ðW̄ Þ þ ~L32ðC̄xÞ � ~L33ðC̄yÞ þ ~L34ðF̄ Þ � ~L35ðN̄
T
Þ � ~L36ðS̄

T
Þ ¼ I9

q €̄W
qX
þ I10

€̄Cx, (13)

~L41ðW̄ Þ � ~L42ðC̄xÞ þ ~L43ðC̄yÞ þ ~L44ðF̄ Þ � ~L45ðN̄
T
Þ � ~L46ðS̄

T
Þ ¼ I9

q €̄W
qY
þ I10

€̄Cy (14)

in which Ij and Ī j are defined as in Huang and Zheng [20], and the linear operators ~Lij( � ) and the nonlinear

operator ~Lð Þ are defined as in Shen [21]. Note that the geometric nonlinearity in the von Kármán sense is
given in terms of ~Lð Þ in Eqs. (11) and (12).

Since the material properties are assumed to be a functions of T and Z, and the temperature is also assumed
to be function of Z, even for the mid-plane symmetric plate the coupling between transverse bending and
in-plane stretching which is given in terms of B�ij and E�ijði; j ¼ 1; 2; 6Þ still exists when the plate is subjected to
heat conduction. In contrast, when the plate is subjected to a uniform temperature increase, all B�ij and E�ij are
zero valued.

In the above equations, the superposed dots indicate differentiation with respect to time. The
forces N̄

T
, moments M̄

T
and higher-order moments P̄

T
and S̄

T
caused by temperature increase are
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defined by

N̄
T
x M̄

T
x P̄

T
x

N̄
T
y M̄

T
y P̄

T
y

N̄
T
xy M̄

T
xy P̄

T
xy

2
6664

3
7775 ¼

X
k¼1

Z hk

hk�1

Ax

Ay

Axy

2
64

3
75

k

ð1;Z;Z3ÞDTðZÞdZ, (15a)

S̄
T

x

S̄
T

y

S̄
T

xy

2
6664

3
7775 ¼

M̄
T
x

M̄
T
y

M̄
T
xy

2
6664

3
7775� 4

3h2

P̄
T
x

P̄
T
y

P̄
T
xy

2
6664

3
7775, (15b)

where DT(Z) ¼ T(Z)�T0 is the temperature increase from the reference temperature T0 at which there are no
thermal strains, and

Ax

Ay

Axy

2
64

3
75 ¼ �

Q̄11 Q̄12 Q̄16

Q̄12 Q̄22 Q̄26

Q̄16 Q̄26 Q̄66

2
64

3
75

1 0

0 1

0 0

2
64

3
75 a11

a22

" #
(16)

in which a11 and a22 are the thermal expansion coefficients measured in the longitudinal and transverse
directions, respectively, and Q̄ij are the transformed elastic constants, details of which can be found in
Refs. [14,15]. Note that for an FGM face sheet, a11 ¼ a22 ¼ af is given in detail in Eq. (4), and Q̄ij ¼ Qij

in which

Q11 ¼ Q22 ¼
Ef ðZ;TÞ

1� n2f
; Q12 ¼

nf Ef ðZ;TÞ

1� n2f
; Q16 ¼ Q26 ¼ 0; Q44 ¼ Q55 ¼ Q66 ¼

Ef ðZ;TÞ

2ð1þ nf Þ
, (17)

where Ef is also given in detail in Eq. (4).
All four edges of the plate are assumed to be simply supported. Depending on the in-plane behavior at the

edges, two cases, Case 1 (for the compressively buckled plate) and Case 2 (for the thermally buckled plate),
will be considered. They are as follows.

Case 1: The edges are simply supported and freely movable in the in-plane directions. In addition the plate is
subjected to uniaxial compressive edge loads.

Case 2: All four edges are simply supported with no in-plane displacements, i.e. prevented from moving in
the X- and Y-direction.

For both cases, the associated boundary conditions can be expressed as
X ¼ 0, a:

W̄ ¼ C̄y ¼ 0, (18a)

M̄x ¼ P̄x ¼ 0, (18b)

Z b

0

N̄x dY þ P ¼ 0 ðfor a compressively buckled plateÞ, (18c)

Ū ¼ 0 ðfor a thermally buckled plateÞ, (18d)

Y ¼ 0, b:

W̄ ¼ C̄x ¼ 0, (18e)

M̄y ¼ P̄y ¼ 0, (18f)

Z a

0

N̄y dX ¼ 0 ðfor a compressively buckled plateÞ, (18g)
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V̄ ¼ 0 ðfor a thermally buckled plateÞ, (18h)

where P is a compressive edge load in the X-direction, M̄x and M̄y are the bending moments and P̄x and P̄y are
the higher-order moments as defined in Refs. [14,15].

The average end-shortening relationships are

Dx

a
¼ �

1

ab

Z b

0

Z a

0

qŪ

qX
dX dY

¼ �
1

ab

Z b

0

Z a

0

A�11
q2F̄

qY 2
þ A�12

q2F̄

qX 2
þ B�11 �

4

3h2
E�11

� �
qC̄x

qX
þ B�12 �

4

3h2
E�12

� �
qC̄y

qY

"

�
4

3h2
E�11

q2W̄

qX 2

�
þ E�12

q2W̄

qY 2

�
�
1

2

qW̄

qX

� �2

� ðA�11N̄
T
x þ A�12N̄

T

y Þ

#
dX dY , (19a)

Dy

b
¼ �

1

ab

Z a

0

Z b

0

qV̄

qY
dY dX

¼ �
1

ab

Z a

0

Z b

0

A�22
q2F̄

qX 2
þ A�12

q2F̄

qY 2

"
þ B�21 �

4

3h2
E�21

� �
qC̄x

qX
þ B�22 �

4

3h2
E�22

� �
@C̄y

@Y

�
4

3h2
E�21

q2W̄

qX 2

�
þE�22

q2W̄

qY 2

�
�

1

2

qW̄

qY

� �2

� ðA�12N̄
T
x þ A�22N̄

T
y Þ

#
dY dX , (19b)

where Dx and Dy are plate end-shortening displacements in the X- and Y-direction.
In the above equations and what follows, the reduced stiffness matrices [A�ij], [B

�
ij], [D

�
ij ], [E

�
ij ], [F

�
ij] and [H�ij]

(i, j ¼ 1, 2, 6) are functions of T and Z, determined through relationships [16]

A� ¼ A�1; B� ¼ �A�1B; D� ¼ D� BA�1B; E� ¼ �A�1E; F� ¼ F� EA�1B; H� ¼ H� EA�1E,

(20)

where Aij, Bij, etc., are the plate stiffnesses, defined by

ðAij ;Bij ;Dij ;Eij ;Fij ;HijÞ ¼
X

k

Z hk

hk�1

ðQijÞkð1;Z;Z
2;Z3;Z4;Z6ÞdZ ði; j ¼ 1; 2; 6Þ, (21a)

ðAij ;Dij ;F ijÞ ¼
X

k

Z hk

hk�1

ðQijÞkð1;Z
2;Z4ÞdZ ði; j ¼ 4; 5Þ. (21b)

3. Analytical method and asymptotic solutions

Having developed the theory, we will try to solve Eqs. (11)–(14) with boundary condition (18). Before
proceeding, it is convenient first to define the following dimensionless quantities:

x ¼ pX=a; y ¼ pY=b; b ¼ a=b; W ¼ W̄= D�11D�22A�11A�22
� �1=4

,

F ¼ F̄= D�11D�22
� �1=2

; ðCx;CyÞ ¼ ðC̄x; C̄yÞa=p D�11D�22A�11A�22
� �1=4

; g5 ¼ �A�12=A�22

g14 ¼ D�22=D�11
� �1=2

; g24 ¼ A�11=A�22
� �1=2

; ðgT1; gT2Þ ¼ AT
X ;A

T
y

	 

a2=p2 D�11D�22

� �1=2
ðgT3; gT4; gT6; gT7Þ ¼ ðD

T
x ;D

T
y ;F

T
x ;F

T
y Þa

2=p2h2D�11

ðMx;My;Px;Py;M
T
x ;M

T
y ;P

T
x ;P

T
y Þ ¼ ðM̄x; M̄y;4P̄x=3h2; 4P̄y=3h2; M̄

T
x ; M̄

T
y ; 4P̄

T
x=3h2,

4P̄
T
y =3h2

Þa2=p2D�11½D
�
11D�22A�11A�22�

1=4,
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t ¼
pt

a

ffiffiffiffiffiffi
E0

r0

s
; g170 ¼ �

I1E0a
2

p2r0D�11
; g170 ¼ �

I1E0a
2

p2r0D�11
; g171 ¼

4E0ðI5I1 � I4I2Þ

3r0h
2I1D

�
11

lT ¼ a0DT1,

ðg80; g90; g10Þ ¼ ðI8; I9; I10Þ
E0

r0D
�
11

; lx ¼ Pb=4p2 D�11D�22
� �1=2

, (22)

in which a0 is an arbitrary reference value defined by

a11 ¼ a11a0; a22 ¼ a22a0 (23)

and E0 and r0 are the reference values of Em and rm at room temperature (T0 ¼ 300K), respectively, and

AT
x ¼ AT

y

	 

, DT

x ¼ DT
y

	 

and FT

x ¼ FT
y

	 

are defined by

AT
x DT

x FT
x

AT
y DT

y FT
y

" #
DT1 ¼ �

X
k

Z hk

hk�1

Ax

Ay

" #
k

ð1;Z;Z3ÞDTðZÞdZ, (24)

where DT1 is a constant and is defined by DT1 ¼ TU�T0 for heat conduction.
Eqs. (11)–(14) may then be rewritten in the following dimensionless form:

L11ðW Þ � L12ðCxÞ � L13ðCyÞ þ g14L14ðF Þ � L16ðM
TÞ

¼ g14b
2LðW ;F Þ þ L17ð €W Þ þ g80

q €Cx

qx
þ b

q €Cy

qy

 !
, (25)

L21ðF Þ þ g24L22ðCxÞ þ g24L23ðCyÞ � g24L24ðW Þ ¼ �
1
2
g24b

2LðW ;W Þ, (26)

L31ðW Þ þ L32ðCxÞ � L33ðCyÞ þ g14L34ðF Þ � L36ðS
T Þ ¼ g90

q €W

qx
þ g10 €Cx, (27)

L41ðW Þ � L42ðCxÞ þ L43ðCyÞ þ g14L44ðF Þ � L46ðS
T Þ ¼ g90b

q €W

qy
þ g10 €Cy, (28)

where the dimensionless operators Lij( ) and L( ) are defined as in Ref. [17].
The boundary conditions of Eq. (18) become
x ¼ 0, p:

W ¼ Cy ¼ 0, (29a)

Mx ¼ Px ¼ 0, (29b)

1

p

Z p

0

b2
q2F
qy2

dyþ 4lxb
2
¼ 0 ðfor a compressively buckled plateÞ, (29c)

dx ¼ 0 ðfor a thermally buckled plateÞ. (29d)

y ¼ 0, p:

W ¼ Cx ¼ 0, (29e)

My ¼ Py ¼ 0, (29f)

Z p

0

q2F

qx2
dx ¼ 0 ðfor a compressively buckled plateÞ, (29g)

dy ¼ 0 ðfor a thermally buckled plateÞ (29h)
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and the unit end-shortening relationships become

dx ¼ �
1

4p2b2g24

Z p

0

Z p

0

g224b
2 q

2F

qy2
� g5

q2F
qx2
þ g24 g511

qCx

qx
þ g233b

qCy

qy

� �"

� g24 g611
q2W

qx2
þ g244b

2 q
2W

qy2

� �
�

1

2
g24

qW

qx

� �2

þ ðg224gT1 � g5gT2ÞlT

#
dxdy ¼ 0, (30a)

dy ¼ �
1

4p2b2g24

Z p

0

Z p

0

q2F

qx2
� g5b

2 q
2F

qy2
þ g24 g220

qCx

qx
þ g522b

qCy

qy

� �"

� g24 g240
q2W
qx2
þ g622b

2 q
2W

qy2

� �
�

1

2
g24b

2 qW

qy

� �2

þ ðgT2 � g5gT1ÞlT

#
dy dx ¼ 0. (30b)

We assume that the solution of Eqs. (25)–(28) can be expressed as

W ðx; y; tÞ ¼W �ðx; yÞ þ ~W ðx; y; tÞ,

Cxðx; y; tÞ ¼ C�xðx; yÞ þ ~Cxðx; y; tÞ,

Cyðx; y; tÞ ¼ C�yðx; yÞ þ ~Cyðx; y; tÞ,

F ðx; y; tÞ ¼ F�ðx; yÞ þ ~F ðx; y; tÞ, (31)

where W�(x, y) is an initial time-independent deflection due to prebuckling and post-buckling equilibrium
states of sandwich plates subjected to uniaxial compression and/or thermal loading. C�xðx; yÞ, C

�
yðx; yÞ and

F�(x, y) are the mid-plane rotations and stress function corresponding to W�(x, y). ~W ðx; y; tÞ is an additional
time-dependent displacement which is considered to originate from the linear or nonlinear vibration of
sandwich plates. ~Cxðx; y; tÞ, ~Cyðx; y; tÞ and ~F ðx; y; tÞ are defined analogously to C�xðx; yÞ, C

�
yðx; yÞ and F�(x, y),

but is for ~W ðx; y; tÞ.
Substituting Eq. (31) into Eqs. (25)–(28), we obtain two sets of equations and can be solved in sequence. The

first set of equations yields the particular solution of static post-buckling or thermal post-buckling deflection,
and the second set of equations gives the homogeneous solution of vibration characteristics on the buckled
plate.

As has been shown in Ref. [21], the solutions W�(x, y), C�xðx; yÞ, C
�
yðx; yÞ and F�(x, y) may be expressed as

W � ¼ �½Að1Þ11 sin kx sin ly� þ �3½Að3Þ13 sin kx sin 3lyþ A
ð3Þ
31 sin 3k sin ly� þOð�5Þ, (32)

F� ¼ � B
ð0Þ
00

y2

2
� b
ð0Þ
00

x2

2
þ �2 �B

ð2Þ
00

y2

2
� b
ð2Þ
00

x2

2
þ B

ð2Þ
20 cos 2kxþ B

ð2Þ
02 cos 2ly

� �

þ �4 �B
ð4Þ
00

y2

2

�
� b
ð4Þ
00

x2

2
þ B

ð4Þ
20 cos 2kxþ B

ð4Þ
02 cos 2lyþ B

ð4Þ
22 cos 2kx cos 2ly

þB
ð4Þ
40 cos 4kxþ B

ð4Þ
04 cos 4lyþ B

ð4Þ
24 cos 2kx cos 4lyþ B

ð4Þ
42 cos 4kx cos 2ly

�
þOð�5Þ, (33)

C�x ¼ �½C
ð1Þ
11 cos kx sin ly� þ �3½Cð3Þ13 cos kx sin 3lyþ C

ð3Þ
31 cos 3kx sin ly� þOð�5Þ, (34)

C�y ¼ �½D
ð1Þ
11 sin kx cos ly� þ �3½Dð3Þ13 sin kx cos 3lyþD

ð3Þ
31 sin 3kx cos ly� þOð�5Þ. (35)

It is mentioned that all coefficients in Eqs. (32)–(35) are related and can be expressed in terms of A
ð1Þ
11 ;

the detailed expressions may be found in Ref. [22].
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Then ~W ðx; y; tÞ, ~Cxðx; y; tÞ, ~Cyðx; y; tÞ, ~F ðx; y; tÞ satisfy the nonlinear motion equations

L11ð ~W Þ � L12ð ~CxÞ � L13ð ~CyÞ þ g14L14ð ~F Þ ¼ g14b
2 Lð ~W þW �; ~F Þ þ Lð ~W ;F�Þ
� �

þ L17
€~W

	 

þ g80

q €~Cx

qx
þ b

q €~Cy

qy

 !
, (36)

L21ð ~F Þ þ g24L22ð ~CxÞ þ g24L23ð ~CyÞ � g24L24ð ~W Þ ¼ �1
2
g24b

2Lð ~W þ 2W �; ~W Þ, (37)

L31ð ~W Þ þ L32ð ~CxÞ � L33ð ~CyÞ þ g14L34ð ~F Þ ¼ g90
q €~W
qx
þ g10

€~Cx (38)

L41ð ~W Þ � L42ð ~CxÞ þ L43ð ~CyÞ þ g14L44ð ~F Þ ¼ g90b
q €~W
qy
þ g10

€~Cy. (39)

It is assumed that the solutions of Eqs. (36)–(39) can be taken in the forms of perturbation expansions as

~W ðx; y; ~t; �Þ ¼
X
j¼1

�jwjðx; y; ~tÞ; ~F ðx; y; ~t; �Þ ¼
X
j¼0

�j f jðx; y; ~tÞ,

~Cxðx; y; ~t; �Þ ¼
X
j¼1

�jCxjðx; y; ~tÞ; ~Cyðx; y; ~t; �Þ ¼
X
j¼1

�jCyjðx; y; ~tÞ. (40)

Here, we introduce an important parameter ~t ¼ �t, in which e is a small parameter. Substituting Eq. (40)
into Eqs. (36)–(39), and collecting terms of the same order of e, a set of perturbation equations are obtained.
Solving these equations step be step, we obtain asymptotic solutions, up to third order, as

~W ðx; y; tÞ ¼ �½w1ðtÞ þ g1 €w1ðtÞ� sin mx sin nyþ ð�w1ðtÞÞ
3
½g331 sin 3mx sin ny

þ g313 sin mx sin 3ny� þOð�4Þ, (41)

~F ðx; y; tÞ ¼ �½gð1;1Þ31 w1ðtÞ þ g4 €w1ðtÞ� sin mx sin nyþ ð�w1ðtÞÞ
2
ðg402 cos 2nyþ g420 cos 2mxÞ

þ ð�w1ðtÞÞ
3
½g
ð3;1Þ
31 g331 sin 3mx sin nyþ g

ð1;3Þ
31 g313 sin mx sin 3ny� þOð�4Þ, (42)

~Cxðx; y; tÞ ¼ �½g
ð1;1Þ
11 w1ðtÞ þ g2 €w1ðtÞ� cos mx sin nyþ ð�w1ðtÞÞ

2g12 sin 2mx

þ ð�w1ðtÞÞ
3
½g
ð3;1Þ
11 g331 cos 3mx sin nyþ g

ð1;3Þ
11 g313 cos mx sin 3ny� þOð�4Þ (43)

~Cyðx; y; tÞ ¼ �½g
ð1;1Þ
21 w1ðtÞ þ g3 €w1ðtÞ� sin mx cos nyþ ð�w1ðtÞÞ

2g22 sin 2ny

þ ð�w1ðtÞÞ
3
½g
ð3;1Þ
21 g331 sin 3mx cos nyþ g

ð1;3Þ
21 g313 sin mx cos 3ny� þOð�4Þ. (44)

Note that in Eqs. (41)–(44) ~t is replaced by t. Coefficients g
ði;jÞ
11 , g

ði;jÞ
21 , g

ði;jÞ
31 ði; j ¼ 1; 3Þ, etc. are given in detail

in the appendix. Also, we have

�½g41w1ðtÞ þ g43 €w1ðtÞ� sin mx sin nyþ ð�w1ðtÞÞ
2
ðg441 cos 2mxþ g442 cos 2nyÞ

þ g14b
2
ð�w1ðtÞÞ

2
ð�Að1Þ11 Þð4k2n2g402 cos 2nyþ 4l2m2g420 cos 2mxÞ sin kx sin ly

þ g14b
2
ð�w1ðtÞÞ

2
ð�3A

ð3Þ
13 Þð4k2n2g402 cos 2nyþ 36l2m2g420 cos 2mxÞ sin kx sin 3ly

þ g14b
2
ð�w1ðtÞÞ

2
ð�3A

ð3Þ
31 Þð36k2n2g402 cos 2nyþ 4l2m2g420 cos 2mxÞ sin 3kx sin ly

þ g42ð�w1ðtÞÞ
3 sin mx sin ny ¼ 0. (45)

Multiplying Eq. (45) by (sinmx sin ny) and integrating over the plate area, we obtain

g43

d2ð�w1Þ

dt2
þ g41ð�w1Þ þ g44ð�w1Þ

2
þ g42ð�w1Þ

3
¼ 0. (46)
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From Eq. (46), the nonlinear frequency of the plates can be expressed as [23]

oNL ¼ oL 1þ
9g42g41 � 10g2

44

12g2
41

A2

� �1=2
ðPxaPcrÞ. (47a)

oNL ¼
3

4

g42

g43

� �1=2
A ðPx ¼ PcrÞ, (47b)

where oL ¼ [g41/g43]
1/2 is the dimensionless linear frequency and A ¼ W̄max=h is the amplitude to thickness

ratio. According to Eq. (22), the corresponding linear frequency can be expressed as ōL ¼ oLðp=aÞðE0=r0Þ
1=2,

where E0 and r0 are defined as in Eq. (22). From Eq. (47b), it can be seen that the nonlinear frequency varies
linearly with the amplitude W̄max=h, when Px/Pcr ¼ 1.

4. Numerical results and discussions

Numerical results are presented in this section for simply supported sandwich plates with FGM face sheets.
The material mixture for FGM face sheets is considered to be silicon nitride and stainless steel, referred to as
Si3N4/SUS304. The material properties Pf, such as Young’s modulus Ef, thermal expansion coefficient af and
thermal conductivity kf, can be expressed as a nonlinear function of temperature as (Touloukian [24])

Pf ¼ P0ðP�1T
�1 þ 1þ P1T þ P2T

2 þ P3T3Þ (48)

in which T ¼ T0+DT and T0 ¼ 300K. P0, P�1, P1, P2 and P3 are the coefficients of temperature T (K) and are
unique to the constituent materials. Typical values for Young’s modulus Ef (in Pa), thermal expansion
coefficient af (in K�1) and whose thermal conductivity kf (in W/mK) of these materials are listed in Table 1
(from Reddy and Chin [25]). The same metal is selected for the homogeneous substrate, and the material
properties are also assumed to be nonlinear functions of temperature of Eq. (48). Poisson’s ratio is assumed to
be a constant, that is, nf ¼ 0.28 for Si3N4/SUS304 face sheets and nH ¼ 0.3 for the SUS304 substrate.

4.1. Comparison studies

To ensure the accuracy and effectiveness of the present method, four test examples were solved for single
plates.

Example 1. We first consider the free vibration of an FGM square plate made of aluminum oxide and
Ti–6Al–4V. The top surface is ceramic rich, whereas the bottom surface is metal rich. The material properties
are: Em ¼ 105.7GPa, nm ¼ 0.2981 and rm ¼ 4429 kg/m3 for Ti–6Al–4V, and Ec ¼ 320.24GPa, nc ¼ 0.26 and
rc ¼ 3750 kg/m3 for aluminum oxide. The FGM plate has a ¼ b ¼ 0.4m and h ¼ 5mm. Table 2 gives the
comparison of natural frequency ōL (Hz) for the two special cases of isotropy, i.e. volume fraction index
Table 1

Temperature-dependent coefficients for Si3N4 and SUS304, from Reddy and Chin [25]

P0 P�1 P1 P2 P3

Si3N4

E (Pa) 348.43e+9 0.0 �3.070e�4 2.160e�7 �8.964e�11

a (K�1) 5.8723e�6 0.0 9.095e�4 0.0 0.0

k (W/mK) 13.723 0.0 �1.032e�3 5.466e�7 �7.876e�11

r (kg/m3) 2370 0.0 0.0 0.0 0.0

SUS304

E (Pa) 201.04e+9 0.0 3.079e�4 �6.534e�7 0.0

a (K�1) 12.330e�6 0.0 8.086e�4 0.0 0.0

k (W/mK) 15.379 0.0 �1.264e�3 2.092e�6 �7.223e�10

r (kg/m3) 8166 0.0 0.0 0.0 0.0
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Table 2

Comparisons of natural frequency ōL (in Hz) for FGM plates with two special values of volume fraction

N ¼ 0 N ¼ 2000

He et al. [26] Park and Kim [12] Present He et al. [26] Park and Kim [12] Present

1 144.66 145.06 144.96 268.92 274.23 271.08

2 360.53 362.41 362.10 669.40 685.18 677.14

3 360.53 362.41 362.10 669.40 685.18 677.14

4 569.89 579.39 578.86 1052.49 1095.40 1082.54

5 720.57 724.62 723.17 1338.52 1369.98 1352.44

6 720.57 – 723.17 1338.52 – 1352.44

7 919.74 – 939.33 1695.23 – 1756.75

8 919.74 – 939.33 1695.23 – 1756.75

9 1225.72 – 1226.97 2280.95 – 2294.80

10 1225.72 – 1226.97 2280.95 – 2294.80

Table 3

Comparisons of nonlinear frequency ratio (oNL/oL) for a simply supported Si3N4/SUS304 plate in ambient temperature field (a/b ¼ 1, a/

h ¼ 10, N ¼ 5)

Temperature field W̄=h ¼ 0:2 0.4 0.6 0.8 1.0

Uniform temperature field (TU ¼ 300K, TL ¼ 300K)

Sundararajan et al. [27] 1.0110 1.0719 1.1760 1.3139 1.4768

Present 1.0210 1.0832 1.1791 1.3015 1.4437

Non-uniform temperature field (TU ¼ 400K, TL ¼ 300K)

Sundararajan et al. [27] 1.0125 1.0775 1.1875 1.3318 1.5017

Present 1.0221 1.0860 1.1849 1.3108 1.4567
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N ¼ 0 and 2000. The results of He et al. [26] and Park and Kim [12] are also given for direct comparison. Note
that in this example the material properties are assumed to be independent of temperature.

Example 2. We now consider the nonlinear frequency ratio (oNL/oL) for a simply supported Si3N4/SUS304
plate in an ambient temperature field. The top surface is ceramic rich, whereas the bottom surface is metal
rich. The material properties are the same as those listed in Table 1. The FGM plate has a/b ¼ 1, a/h ¼ 10,
and the volume fraction index N is taken to be 5. The results are listed in Table 3 and compared with the FEM
results of Sundararajan et al. [27]. Note that in Ref. [27], the material properties of the constituents using the
Mori–Tanaka homogenization method are given.

Example 3. We then examine the relationship between natural frequency ratio (o/o0) and in-plane
compressive load ratio P/Pcr for an isotropic rectangular plate with an aspect ratio of 3, where o0 is the lowest
linear natural frequency of the plate and Pcr is the buckling load of the same plate under uniaxial compression.
The curves are plotted in Fig. 2 and compared with the FEM result of Yang and Han [4] based on a high-order
triangular membrane finite element combined with a fully conforming triangular plate bending element.

Example 4. We finally examine the relationship between fundamental frequencies ōL (Hz) and temperature
increase T (K) for a simply supported Si3N4/SUS304 plate under the two special cases of isotropy, i.e. volume
fraction index N ¼ 0 and 2000. The top surface is ceramic rich, whereas the bottom surface is metal rich. The
material properties are the same as those listed in Table 1. The FGM plate has a ¼ b ¼ 0.3m and a/h ¼ 100.
The curves are plotted in Fig. 3 and compared with the FEM result of Park and Kim [12] based on the first-
order shear deformation plate theory.
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Fig. 2. Comparisons of natural frequencies for the buckled isotropic rectangular plate with aspect ratio of 3 (n ¼ 0.3).
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Fig. 3. Comparisons of natural frequencies for the thermally buckled Si3N4/SUS304 square plate.
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These four comparisons show that the results from the present method are in good agreement with the
existing results, thus verifying the reliability and accuracy of the present method.

4.2. Parametric studies

A parametric study has been carried out and typical results are shown in Figs. 4–13. For these examples, the
plate geometric parameter a/b ¼ 1, b/h ¼ 20, and the thickness of the FGM face sheets hF ¼ 1mm whereas the
thickness of the homogeneous substrate is taken to be hH ¼ 4, 6 and 8mm, so that the substrate-to-face sheet
thickness ratio hH/hF ¼ 4, 6 and 8, respectively. It should be appreciated that in all these examples
m ¼ n ¼ k ¼ l ¼ 1. W̄max=h is the amplitude to thickness ratio and the nonlinear frequency oNL has been
normalized by the lowest linear natural frequency o0 of the same plate.

Fig. 4 shows the effects of volume fraction index N on the linear fundamental frequencies ōL of the pre- and
post-buckled sandwich plate with hH/hF ¼ 4 under a uniform or a non-uniform temperature field. It can be
seen that as the volume fraction index increases, the fundamental frequency increases in the pre-buckling
region, but decreases in the initial post-buckling region (Pxo3500 kN), and in the deep post-buckling region
the fundamental frequency becomes greater, when increasing in N. This is due to the fact that the plate
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Fig. 4. Effects of volume fraction index N on the fundamental frequencies of the pre- and post-buckled sandwich plate in thermal

environments: (a) uniform temperature field; (b) heat conduction.
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thermal environments: (a) uniform temperature field; (b) heat conduction.
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stiffness is increased in the pre-buckling region, when increasing in N, but in the initial post-buckling region
the initial deflection is an important issue and the plate will have a small deflection when it has a great stiffness;
further in the deep post-buckling region the effect of plate stiffness becomes more pronounced again.

Fig. 5 shows the effects of substrate-to-face sheet thickness ratio hH/hF on the fundamental frequencies of
the pre- and post-buckled sandwich plate with N ¼ 2 under a uniform or a non-uniform temperature field. It is
found that the increase in hH/hF yields a decrease in fundamental frequency. This is because the stiffness of the
sandwich plate becomes weaker when hH/hF is increased.

Fig. 6 shows temperature changes in the fundamental frequencies of the pre- and post-buckled sandwich
plate with hH/hF ¼ 4 and N ¼ 2 under a uniform or a non-uniform temperature field. It can be seen that,
for a uniform temperature field, as the temperature is increased, fundamental frequencies have decreased in
the pre-buckling region, but increased in the post-buckling region. It can also be seen that the effect of the
non-uniform temperature field is larger than that of uniform temperature field. When heat conduction is taken
into consideration, the larger top–bottom temperature difference leads to a larger fundamental frequency
increase.
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From Figs. 4 to 6, it can be seen that, as the compressive load reaches the buckling load, the fundamental
frequencies will drop to zero under a uniform temperature field. In contrast, the fundamental frequencies do
not go to zero, because no bifurcation-type buckling could occur when heat conduction is taken into account.

Figs. 7–9 show, respectively, the effects of volume fraction index N, substrate-to-face sheet thickness ratio
hH/hF and temperature changes on the nonlinear frequency ratio of the pre- and post-buckled sandwich plate
in thermal environments. Three cases, i.e. Px/Pcr ¼ 0, 1 and 2, are considered. Px/Pcr ¼ 0 denotes no in-plane
loads, Px/Pcr ¼ 1 denotes bifurcation buckling case and Px/Pcr ¼ 2 represents a large-amplitude free
vibration about a post-buckled equilibrium state. Note that in Fig. 9 Px/Pcr is replaced by Px/P0, where P0 is a
reference value of buckling load of the plate at TU ¼ TL ¼ 300K. It can be seen that the nonlinear frequency
ratio is decreased, when the volume fraction index N is increased. The substrate-to-face sheet thickness ratio
hH/hF and temperature changes only have small effects on the nonlinear frequency ratio of the plate. Note
that, in the present study, the solution is based on the assumption that the vibration of the plate is symmetric
about the flat position. Another type of motion is possible in which the plate vibrates about a static buckled
position on one side of the flat position. Such motion is, however, not considered in the present study.
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X.-K. Xia, H.-S. Shen / Journal of Sound and Vibration 314 (2008) 254–274 269
Figs. 10–13 show thermally post-buckled vibration results for the same plate analogous to the compressively
post-buckled vibration results of Figs. 4, 5, 7 and 8, which are for the thermal loading case of a uniform
temperature field. To compare Figs. 5a and 11, it can be seen that now the buckling temperature is decreased,
on increasing tH/tF. Otherwise, they lead to broadly the same conclusions as do Figs. 4, 7 and 8.

5. Concluding remarks

Small- and large-amplitude vibration analyses of compressively and thermally post-buckled sandwich plates
with FGM face sheets in a thermal environment have been presented. Analytical solutions have been
presented by using an improved perturbation technique. Numerical calculations have been performed for mid-
plane symmetric sandwich plates with FGM face sheets subjected to uniaxial compression and/or thermal
loading. A parametric study with different values of volume fraction index, substrate-to-face sheet thickness
ratio and temperature changes have been carried out. Numerical results show that, as the volume fraction
index increases, the fundamental frequency increases in the pre-buckling region, but decreases in the post-
buckling region. In contrast, the nonlinear frequency ratio decreases in both the pre- and the post-buckling
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region on increasing N. The results reveal that the substrate-to-face sheet thickness ratio and temperature
changes have a significant effect on the fundamental frequency, but only have a small effect on the nonlinear
frequency ratio.
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[16] H.-S. Shen, Kármán-type equations for a higher-order shear deformation plate theory and its use in the thermal postbuckling

analysis, Applied Mathematics and Mechanics 18 (1997) 1137–1152.



ARTICLE IN PRESS
X.-K. Xia, H.-S. Shen / Journal of Sound and Vibration 314 (2008) 254–274274
[17] H.-S. Shen, Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments,

International Journal of Mechanical Sciences 44 (2002) 561–584.

[18] H.-S. Shen, Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties, International

Journal of Mechanical Sciences 49 (2007) 466–478.

[19] X.-L. Huang, H.-S. Shen, Nonlinear vibration and dynamic response of functionally graded plates in thermal environments,

International Journal of Solids and Structures 41 (2004) 2403–2427.

[20] X.-L. Huang, J.-J. Zheng, Nonlinear vibration and dynamic response of simply supported shear deformable laminated plates on

elastic foundations, Engineering Structures 25 (2003) 1107–1119.

[21] H.-S. Shen, S.-R. Li, Postbuckling of sandwich plates with FGM face sheets and temperature-dependent properties, Composites

Part B: Engineering 39 (2) (2008) 332–344.

[22] H.-S. Shen, Thermal buckling and postbuckling of laminated plates, in: N.E. Shanmugam, C.M. Wang (Eds.), Analysis and Design of

Plated Structures (Vol. 1: Stability), Woodhead Publishing Ltd., 2006, pp. 170–213.

[23] H.-Q. Wang, Nonlinear Vibration, Higher Education Press, 1992 (in Chinese).

[24] Y.S. Touloukian, Thermophysical Properties of High Temperature Solid Materials, Macmillan, New York, 1967.

[25] J.N. Reddy, C.D. Chin, Thermomechanical analysis of functionally graded cylinders and plates, Journal of Thermal Stresses 21 (1998)

593–629.

[26] X.Q. He, T.Y. Ng, S. Sivashanker, K.M. Liew, Active control of FGM plates with integrated piezoelectric sensors and actuators,

International Journal of Solids and Structures 38 (2001) 1641–1655.

[27] N. Sundararajan, T. Prakash, M. Ganapathi, Nonlinear free flexural vibrations of functionally graded rectangular and skew plates

under thermal environments, Finite Elements in Analysis and Design 42 (2005) 152–168.


	Vibration of post-buckled sandwich plates �with FGM face sheets in a thermal environment
	Introduction
	Theoretical development
	Analytical method and asymptotic solutions
	Numerical results and discussions
	Comparison studies
	Parametric studies

	Concluding remarks
	References


